68 research outputs found

    Perspective of buried oxide thickness variation on triple metal-gate (TMG) recessed-S/D FD-SOI MOSFET

    Get PDF
    Recently, Fully-Depleted Silicon on Insulator (FD-SOI) MOSFETs have been accepted as a favourable technology beyond nanometer nodes, and the technique of Recessed-Source/Drain (Re-S/D) has made it more immune in regards of various performance factors. However, the proper selection of Buried-Oxide (BOX) thickness is one of the major challenges in the design of FD-SOI based MOS devices in order to suppress the drain electric penetrations across the BOX interface efficiently. In this work, the effect of BOX thickness on the performance of TMG Re-S/D FD-SOI MOSFET has been presented at 60 nm gate length. The perspective of BOX thickness variation has been analysed on the basis of its surface potential profile and the extraction of the threshold voltage by performing two-dimensional numerical simulations. Moreover, to verify the short channel immunity, the impact of gate length scaling has also been discussed. It is found that the device attains two step-up potential profile with suppressed short channel effects. The outcomes reveal that the Drain Induced Barrier Lowering (DIBL) values are lower among conventional SOI MOSFETs. The device has been designed and simulated by using 2D numerical ATLAS Silvaco TCAD simulator

    Pesticide applications in Agriculture and its Environmental and Human Health Impacts

    Get PDF
    The use of chemicals in modern agriculture has significantly increased productivity is very common now a days. There has been an increase in the concentration of pesticides in food and in our environment, with associated negative effects on human health and the environment. The excessive use of pesticides has generated increasing concerns on the negative effects of human health as well as the environment. Impact on the environment of Pesticides can pose serious distress on soil, water, territory, and other vegetation. The pesticides application directly kill the insects, pest, weeds and pathogens but it also indirectly can be harmful and toxic on to the host of the other organism which are birds, beneficial insects, and all other non-target plant and animals. Insecticides are usually the most extremely toxic class of pesticides; however, herbicides can also pose risks to non-target organisms. With this concern most of the pesticides and chemicals are non-biodegradable, and as a result of bioaccumulation, they can enter into the food chain and eventually distress human and animal health, on the whole environment and ecosystem

    ShakeNet: A portable wireless sensor network for instrumenting large civil structures

    Get PDF
    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software

    Preliminary evaluation of melatonin in the kindling model of epilepsy

    Get PDF
    During the past decades, epilepsy syndrome has been depicted across India as well as worldwide and this leads to increasing mortality and morbidity rate. Researchers are trying to investigate the responsible causes and risk factors for seizure occurrence. Epilepsy is a chronic disorder which is derived from a Latin word ‘sacire’ meaning ‘convulsive attack’ and is expressed as a paroxysmal experience appointed to atypical, unnecessary or concurrent neuronal bustle in the brain. The treatment of epilepsy involves the use of anti-epileptic drugs i.e. Sodium valproate, phenytoin, carbamazepine. Despite being treated with the available anti-convulsant drugs, this disease is still prevalent worldwide. So, as an adjuvant treatment melatonin exhibit an anti-epileptic activity in several animal models of epilepsy. However, its anti-epileptic potential has yet to be evaluated in Pentylenetetrazole (PTZ) induced model of epilepsy through kindling phenomenon. Rats were injected with a dose of (35-55 mg/kg) of pentylenetetrazole (PTZ) up to twenty days in alternate days. Observed the convulsive behavior of rats for thirty minutes immediately after PTZ injection.  The entire treatment schedule includes the administration of melatonin (75 mg/kg) one hour prior to the PTZ administration. Sodium valproate was used as standard drug for this kindling model of epilepsy. Keywords: Pentylenetetrazole, Melatonin, Sodium valproate, Gamma-amino butyric aci

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe

    ABSTRACT

    No full text
    In bridging the digital divide, two important criteria are cost-effectiveness, and power optimization. While 802.11 is cost-effective and is being used in several installations in the developing world, typical system configurations are not really power efficient. In this paper, we propose a novel “Wake-on-WLAN ” mechanism for coarse-grained, on-demand power on/off of the networking equipment at a remote site. The novelty also lies in our implementation of a prototype system using low-power 802.15.4-based sensor motes. We describe the prototype, as well as its evaluation on field in a WiFi testbed. Preliminary estimates indicate that the proposed mechanism can save significant power in typical rural networking settings
    corecore